Homotopy Groups of the Moduli Space of Metrics of Positive Scalar Curvature

نویسندگان

  • BORIS BOTVINNIK
  • MARK WALSH
چکیده

We prove that for many degrees in a stable range the homotopy groups of the moduli space of metrics of positive scalar curvature on S and on other manifolds are non-trivial. This is achieved by further developing and then applying a family version of the surgery construction of Gromov-Lawson to an exotic smooth families of spheres due to Hatcher.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Moduli Space of Positive Ricci Curvature Metrics on Homotopy Spheres

We show that the moduli space of Ricci positive metrics on a certain family of homotopy spheres has infinitely many components.

متن کامل

On the Homotopy Type of the Space R+(m)

In this paper it is shown that the space of metrics of positive scalar curvature on a manifold is, when nonempty, homotopy equivalent to a space of metrics of positive scalar curvature that restrict to a fixed metric near a given submanifold of codimension greater or equal than 3. Our main tool is a parameterized version of the Gromov-Lawson construction, which was used to show that the existen...

متن کامل

Positive Ricci Curvature

We discuss the Sasakian geometry of odd dimensional homotopy spheres. In particular, we give a completely new proof of the existence of metrics of positive Ricci curvature on exotic spheres that can be realized as the boundary of a parallelizable manifold. Furthermore, it is shown that on such homotopy spheres Σ the moduli space of Sasakian structures has infinitely many positive components det...

متن کامل

Positive scalar curvature, diffeomorphisms and the Seiberg–Witten invariants

We study the space of positive scalar curvature (psc) metrics on a 4–manifold, and give examples of simply connected manifolds for which it is disconnected. These examples imply that concordance of psc metrics does not imply isotopy of such metrics. This is demonstrated using a modification of the 1–parameter Seiberg–Witten invariants which we introduced in earlier work. The invariant shows tha...

متن کامل

Warped product and quasi-Einstein metrics

Warped products provide a rich class of physically significant geometric objects. Warped product construction is an important method to produce a new metric with a base manifold and a fibre. We construct compact base manifolds with a positive scalar curvature which do not admit any non-trivial quasi-Einstein warped product, and non compact complete base manifolds which do not admit any non-triv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009